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Wildfires statistics for the conterminous United States (U.S.) are
examined in a spatially and temporally explicit manner. We use a
high-resolution data set consisting of 88,916 U.S. Department of
Agriculture Forest Service wildfires over the time period 1970–
2000 and consider wildfire occurrence as a function of ecoregion
(land units classified by climate, vegetation, and topography),
ignition source (anthropogenic vs. lightning), and decade. For the
conterminous U.S., we (i) find that wildfires exhibit robust fre-
quency–area power-law behavior in 18 different ecoregions; (ii)
use normalized power-law exponents to compare the scaling of
wildfire-burned areas between ecoregions, finding a systematic
change from east to west; (iii) find that wildfires in the eastern
third of the U.S. have higher power-law exponents for anthropo-
genic vs. lightning ignition sources; and (iv) calculate recurrence
intervals for wildfires of a given burned area or larger for each
ecoregion, allowing for the classification of wildfire regimes for
probabilistic hazard estimation in the same vein as is now used for
earthquakes.

frequency–area statistics � power-law distribution � Bailey ecoregion
divisions � U.S. Department of Agriculture Forest Service � probabilistic
hazard

Over the last decade, high-profile wildfires (1, 2) have
resulted in numerous fatalities and loss of infrastructure.

Wildfires also have a significant impact on climate and ecosys-
tems; recently, several researchers (3–7) have emphasized the
need for regional-level examinations of wildfire-regime dynam-
ics and change, and the factors driving them. With implications
for hazard management, climate studies, and ecosystem re-
search, there is, therefore, significant interest in appropriate
analysis of historical wildfire databases. Insightful studies using
wildfire database statistics exist (5–24) but are often hampered
by the low spatial and�or temporal resolution of their data sets.
Here, we use a high-resolution database of wildfires for the
conterminous United States (U.S.), combined with techniques
drawn from recent advances in statistical physics and complexity
theory, to examine U.S. wildfire statistics in a spatially and
temporally explicit manner.

Statistical physics and complexity theory have begun to be
applied to a wide range of natural hazards (e.g., refs. 25 and 26).
One characteristic of many of these studies is power-law (scale-
invariant) statistical distributions (27), in which the probability
of a certain value occurring is raised to some power of that value.
For instance, earthquakes follow a power-law relationship of the
frequency (number) vs. energy released, the Gutenberg–Richter
relationship (28). The frequency–size statistics of many other
natural hazards also appear to satisfy power-law distributions to
a good approximation under a wide variety of conditions (29).
These natural hazards include asteroid impacts (30, 31), land-
slides (32, 33), volcanic eruptions (34), and the subject of this
paper, wildfires. Power-laws and other ‘‘heavy-tailed’’ distribu-
tions are increasingly being used by reinsurance companies and
governments for probabilistic hazard analysis (35, 36) and are
playing a growing role in environmental and social policy
decisions.

The wildfire regime encompasses the timing, frequency, and
magnitude of all wildfires that occur in a region. The term
‘‘wildfire,’’ as used in this paper, is taken to mean any burned

area, irrespective of size or ignition source. Recent studies of
wildfire regimes suggest frequency–area probability distribu-
tions that are power-law (8–13) or otherwise ‘‘heavy-tailed’’
(14–19) over many orders of wildfire area. The power-law takes
the form

ḟ�AF� � �AF
��, [1]

with frequency density ḟ(AF), the number of wildfires in ‘‘unit’’
bins with AF burned area, and � and � constants. Local and
broad regional studies of wildfires in the U.S. (9), Australia (9),
Italy (10), and China (12), for example, have shown power-law
behavior with exponents ranging from � � 1.1–1.8, over two to
five orders of magnitude of wildfire area, for 120–9,000 indi-
vidual wildfire events. However, the low spatial and temporal
resolution of the data sets used in these studies has made
analyses as a function of wildfire regime drivers difficult. There-
fore, in this paper, we use a high-resolution data set (discussed
in the next section) consisting of U.S. Department of Agriculture
Forest Service (USFS) wildfire-occurrence records [ref. 37; the
wildfire data discussed in ref. 37 were obtained through personal
communication with T. J. Brown (University of Nevada, Reno)]
for NFT � 88,916 wildfires (AF � 0.004 km2 � 1 acre) between
1970 and 2000. We then examine the resultant wildfire burned-
area statistics both spatially and temporally at regional scales as
a function of ecological and anthropogenic driving factors. First,
we will discuss the data and methods; next, the results of
analyses; and, finally, the general implications of having robust
power-law behavior for wildfire statistics in each ecoregion.

Data and Methods
Data Quality and Completeness. Using 657,949 wildfires recorded
between 1970 and 2000 by the USFS and the U.S. Department
of the Interior (DOI), Brown et al. (37) compiled an inventory
and performed a coarse assessment of the quality of historical
federal wildland wildfire-occurrence records. They found 90.7%
(324,122 wildfires) of USFS records and 71.0% (214,687 wild-
fires) of the DOI records ‘‘useable’’ in terms of their complete-
ness and spatial coordinates. Furthermore, they note that DOI
wildfire reporting was not continuous for most of the 1970s and
that for both the USFS and DOI data, counts of very small
wildfire sizes are often incomplete because wildfires may go
undetected or unreported. Therefore, in our study we use only
those Brown et al. (37) records (i) from the USFS and (ii) with
areas AF � 0.004 km2 � 1 acre, giving in our data set (for
1970–2000) a total number of wildfires NFT � 88,916 and total
area burned AFT � 68,994 km2 (see Table 1 for numbers of
wildfires and area burned per ecoregion). Wildfires in our study
were classified as ‘‘anthropogenic’’ (64% by number) or ‘‘light-
ning’’ (36%) according to the description given by Brown et al.
(37). All nonanthropogenic fires are here termed ‘‘lightning,’’
because of the very small occurrence (�0.01%) of ‘‘other’’
natural causes (e.g., volcanism) (37).

Abbreviations: U.S., United States; USFS, U.S. Department of Agriculture Forest Service.
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Bailey’s Ecoregions. To allow spatial analyses with regard to the
biophysical factors that drive wildfire regimes, we classify the
USFS wildfire data into the ecoregion divisions developed by
Bailey (38) (Fig. 1A). Ecoregions distinguish geographic regions
that share common biophysical characteristics. In Bailey’s clas-
sification (38), a three-level hierarchy is used: domains (based
primarily on climate), divisions (climate, vegetation, and soils),
and provinces (climate, vegetation, soils, land-surface form, and
fauna). Mountainous areas within specific divisions and prov-
inces are also classified. In the conterminous U.S., there are
three domains, subdivided into 19 divisions and further divided
into 34 provinces. Ecoregion divisions are shown in Fig. 1 A, with
division names, codes, and areas in Table 1. Using Bailey’s
ecoregion division level in our analyses allows spatial disaggre-
gation of the data, at a resolution suitable for the study of
potential wildfire-regime drivers, while ensuring that an ade-
quate number of wildfires are available for statistical analyses.
Wildfires occurring on USFS lands are used as a representative
sample of the ecoregion division in which they are located. USFS
land area per ecoregion is given in Table 1, with the spatial
distribution in the conterminous U.S. shown in Fig. 1B. Of the
18 ecoregion divisions with wildfire data, USFS lands range from
0.2% (Prairie) to 51.3% (Temperate Steppe Mtns.) of the
respective ecoregion’s area.

Frequency–Area Statistics. In each ecoregion division, we examine
the frequency–area statistics of USFS wildfires. Because the
wildfire inventories used are not ‘‘complete’’ (there are many
more ‘‘smaller’’ wildfires than measured), probability densities
are not appropriate; instead, we use frequency densities ƒ(AF)
defined as

f�AF� �
�NF

�AF
, [2]

where AF is the wildfire burned area and �NF is the number of
wildfires in a ‘‘bin’’ of width �AF. The frequency densities ƒ(AF)
are then the number of wildfires per ‘‘unit’’ bin. We use
frequency densities because cumulative frequencies can obscure
underlying trends in finite data sets (39). Because there are many
more small wildfires than larger ones, we increase our bin width
�AF with increasing area AF, to give approximately equal bin
widths in logarithmic coordinates. The USFS areas over which
the wildfires occur change from one ecoregion to another (Table
1 and Fig. 1B). Therefore, to allow specific comparison between
ecoregions, we take the frequency densities ḟ(AF) (fires�km�2)
and normalize them by (i) the USFS area (km2) within each
ecoregion and (ii) the period of observation (yr), to give
normalized frequency densities ḟ(AF) (fires�yr�1�km�4).

For each ecoregion division, the normalized frequency den-
sities ḟ(AF) are plotted as a function of wildfire area AF. As we
will show later (see Results), an excellent fit in each case is given
by the inverse power-law distribution (Eq. 1), a two-parameter
distribution that forms a straight line in log–log space. In each
case, we estimate the best fit for log[ḟ(AF)] � �� log[AF] � log�,
where � is the gradient and log� is the y-intercept. The power-
law exponent � quantifies the ratio of the number of large to
small wildfires in a given area, with � � 0 indicating the same
number of large as small wildfires (per ‘‘unit’’ size bins). As �
increases, large events become rarer with respect to small ones.
The y-intercept, or log�, is the normalized number of wildfires
per unit bin; in our case, AF � 1 km2.

Calculation of Recurrence Intervals. An extension of having the two
parameters � and � in the inverse power-law distribution given

Table 1. Results by Bailey ecoregion divisions in the conterminous U.S. for frequency–area and recurrence-interval analyses of
USFS wildfires

Ecoregion division name

Ecoregion
division

code

Ecoregion
division

area, km2

USFS
area, km2 AFT, km2 NFT � log� r2

T (�0.01 km2),
yr

T (�10 km2),
yr

Hot Continental [220] 969,955 32,068 1,132.4 8,429 1.75 � 0.11 �3.81 � 0.12 0.974 0.19 � 0.10 34 � 20
Hot Continental Mtns. [M220] 192,955 43,609 815.4 7,353 1.75 � 0.09 �4.05 � 0.10 0.984 0.30 � 0.14 55 � 27
Marine [240] 38,591 1,147 8.0 58 1.37 � 0.21 �3.99 � 0.31 0.972 0.89 � 0.69 23 � 22
Marine Mtns. [M240] 138,300 67,360 2,813.5 3,875 1.53 � 0.05 �4.36 � 0.07 0.989 2.47 � 0.73 100 � 37
Mediterranean [260] 88,319 2,546 2,918.6 475 1.30 � 0.05 �3.44 � 0.07 0.987 0.22 � 0.05 2 � 1
Mediterranean Mtns. [M260] 241,388 99,798 16,055.4 11,882 1.46 � 0.05 �3.93 � 0.06 0.989 0.51 � 0.13 13 � 4
Prairie [250] 772,597 1,583 39.4 316 1.48 � 0.15 �3.60 � 0.19 0.964 0.28 � 0.19 9 � 8
Savanna [410] 20,202 0 0 0
Subtropical [230] 1,064,749 42,920 2,670.2 16,423 1.81 � 0.07 �3.74 � 0.09 0.987 0.12 � 0.05 33 � 14
Subtropical Mtns. [M230] 22,792 6,667 142.0 1,816 1.70 � 0.12 �3.82 � 0.15 0.974 0.24 � 0.15 32 � 21
Temperate Desert [340] 689,458 39,210 3,890.7 2,391 1.39 � 0.05 �4.09 � 0.07 0.985 0.85 � 0.22 13 � 5
Temperate Desert Mtns. [M340] 112,924 27,289 1,027.9 885 1.39 � 0.07 �4.38 � 0.08 0.984 1.66 � 0.54 27 � 13
Temperate Steppe [330] 1,099,973 43,841 3,034.5 2,466 1.46 � 0.05 �4.18 � 0.06 0.990 0.89 � 0.23 22 � 8
Temperate Steppe Mtns. [M330] 585,081 300,383 26,281.0 15,487 1.49 � 0.04 �4.34 � 0.06 0.993 1.18 � 0.26 36 � 10
Tropical�Subtropical Desert [320] 447,811 13,306 1,658.4 2,379 1.47 � 0.07 �3.69 � 0.08 0.984 0.29 � 0.09 8 � 3
Tropical�Subtropical Steppe [310] 657,342 28,536 2,179.6 4,138 1.57 � 0.06 �3.95 � 0.07 0.990 0.40 � 0.12 20 � 7
Tropical�Subtropical Steppe Mtns. [M310] 130,018 42,861 3,949.3 8,594 1.54 � 0.06 �3.93 � 0.07 0.989 0.41 � 0.12 18 � 6
Warm Continental [210] 381,507 47,453 374.4 1,888 1.69 � 0.08 �4.71 � 0.10 0.988 1.70 � 0.76 203 � 99
Warm Continental Mtns. [M210] 112,924 5,983 2.9 61 1.68 � 0.28 �5.18 � 0.41 0.988 13.64 � 12.88 1,672 � 1616
Totals 7,766,886 846,560 68,993.6 88,916

Given for each Bailey ecoregion division (38) (Fig. 1A) in the conterminous U.S. are the following: division name; division code (M � mountain areas); area
of division; area of USFS lands within the ecoregion division (Fig. 1B); the total area, AFT, and total number, NFT of wildfires occurring in USFS lands (1970–2000)
irrespective of ignition source and included in the data set used for analyses in this paper (ref. 37; and see Data and Methods); and the results of frequency–area
and recurrence-interval analyses. Frequency–area parameters � and log� are from Eq. 1, ḟ(AF) � �AF

��, where in each case the best fit was estimated for log[ḟ(AF)] �
��log[AF] � log�, with coefficient of determination r2 as given. Error bars on � and log� are �2� (standard deviations) and approximately equivalent to
upper�lower 95% confidence intervals. Error bars were obtained from each variable’s standard error and degrees of freedom based on the number of ’bins’ used
in the least-squares fit. For completeness, all fits are shown; however, care should be taken in interpreting � and log� based on small data samples (e.g., NFT �
100). Recurrence intervals T(�AF) are obtained from Eq. 5 and represent the average time between wildfires �0.01 km2 and �10 km2, occurring in spatial areas
of 1,000 km2 within each ecoregion. Associated error bars again represent �2� (standard deviations) or 95% confidence intervals, calculated for each ecoregion
by using the upper�lower 95% confidence interval values as given in this table for � and log�.
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in Eq. 1 is the calculation of the recurrence interval T(�AF),
based on the probability that in a defined spatial area (i.e., some
specific region AR), a given size event with area AF will be
equaled or exceeded in any given year. For example, if in a
defined region there is an average 1 in 100 chance per year that
a wildfire of area �10 km2 will occur, this size event (10 km2) is
said to have a 100-yr recurrence interval. In other words,
assuming that the events are uncorrelated in time (Poissonian),
then for this region there will be, on average, 100 yr between
wildfires of size 10 km2 or greater. In calculating the recurrence
intervals associated with different wildfire areas AF, we first take
the integral of Eq. 1 to arrive at NCF(�AF), the cumulative
number of wildfires with areas greater than or equal to AF, giving
(for � � 1)

NCF��AF� � �
AF

	

f�A
F�dA
F��AR� �

� � 1� AF
1��, [3]

where � and � are constants from Eq. 1, � is the data set duration
in years, and AR is the spatial area over which the probabilistic

‘‘hazard’’ is to be considered. As AR increases, the number of
wildfires of a given size or larger NCF(�AF) in that region also
increases. We could terminate the integral in Eq. 3 at some Amax
instead of infinity, because the power-law distribution given in
Eq. 1 must have some upper bound. However, because the
numbers of the most extreme events are few, the shape of the tail
at these extreme values is unclear. Therefore, we choose to
consider ‘‘small’’ and ‘‘medium’’ values of AF, well below the
maximum wildfire area that might occur in any given ecoregion.

Using a Weibull equation, the recurrence interval T(�AF)
associated with a wildfire of a given area or larger is � � 1, the
total number of years in the data set plus one, divided by
NCF(�AF), giving (for � � 1)

T��AF� �
� 	 1

NCF��AF�
� � � 	 1

�
� � � � 1

�
� � AF

��1

AR
� . [4]

The length of our data set is � � 31 yr, and we consider the
recurrence interval of wildfires in spatial areas of AR � 1,000
km2, giving (for � � 1)

T��AF� � 1.032 
 10�3 km2� � � 1
�

� AF
��1, [5]

with AF in km2 and T(�AF) in years. In Results, we present
recurrence intervals by ecoregion for AF � 0.01 km2 and AF �
10 km2 for spatial areas within each ecoregion of AR � 1,000 km2.

Results
Frequency–Area Statistics of Wildfires. In Table 1, for each ecore-
gion division, we give the results of our normalized frequency–
area analyses. Each ecoregion division exhibits excellent fre-
quency–area power-law behavior (r2 � 0.96) over more than five
orders of magnitude for burned area. In each case, the wildfire
statistics have been examined as a function of ecoregion division,
regardless of ignition source (lightning vs. anthropogenic). Also
included in Table 1 are �2� error bars (see legend) equivalent
to lower�upper 95% confidence intervals for both � and log�.
Two example analyses are given in Fig. 2, with the Mediterranean
Ecoregion (� � 1.30 � 0.05) and the Subtropical Ecoregion (� �
1.81 � 0.07) exhibiting the smallest and largest � values for the
18 ecoregions, respectively. Note that care should be taken in
interpreting parameter values for ecoregion divisions with very
small wildfire numbers (e.g., NFT � 100; Marine and Warm
Continental Mtns.), because these have increased uncertainty in
estimates for � and log�.

Spatial Distribution of �. We next map the spatial distribution of
� values by ecoregion (Fig. 3A), where � is the result of each
frequency–area analysis shown in Table 1. Fig. 3A suggests an
east-to-west gradient of higher-to-lower � values across the
conterminous U.S. We note that Fig. 3A does not take into
account the �2� error bars on � (95% confidence intervals) as
given in Table 1. However, even taking the error bars into
account, there is still strong evidence of the east-to-west gradient
of � values across the conterminous U.S.

Lightning vs. Anthropogenic Wildfires. To explore alternative hy-
potheses given for the east-to-west gradient of �, we examine
wildfire records with reference to ignition source, whether
natural (lightning) or anthropogenic. The numbers of
anthropogenic vs. lightning wildfires in our data set varies as a
function of ecoregion division, with the ratio (NF anthropogenic�
NF lightning) � 0.2–0.8 in the seven Temperate and Tropical�
Subtropical ecoregions (all divisions with codes �300); 1.2–4.7
in Marine, Marine Mtns., Mediterranean Mtns., and Subtropical
Mtns.; and 11–43 in the remaining seven ecoregion divisions.

Within each ecoregion division, we examine �anthropogenic and

Fig. 1. Bailey’s ecoregion divisions and USFS lands. (A) In Bailey’s classifica-
tion (38), the conterminous U.S. is divided into ecoregion divisions according
to common characteristics of climate, vegetation, and soils. Mountainous
areas within specific divisions are also classified. In this paper, we use ecore-
gion divisions to geographically subdivide an extensive database of wildfire-
burned areas for statistical analyses as a function of ecoregion division. (B)
Location of USFS lands in the conterminous U.S. Table 1 gives each ecoregion
division area and the total area of USFS lands within each ecoregion.
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�lightning and find (�anthropogenic��lightning) � 1 in the eastern third
of the U.S. (35% by area), where �anthropogenic��lightning � 1.30
(Hot Continental), 1.21 (Warm Continental), 1.14 (Hot Conti-
nental Mtns.), and 1.12 (Subtropical). Most other areas have
(�anthropogenic��lightning) � 1 (within �2� error bars, as described
in Table 1 legend), except for the Temperate Steppe division,
where (�anthropogenic��lightning) � 0.88. At Bailey’s ecoregion
‘‘domain’’ level (38), where divisions with related climates are
grouped, we find that ecoregion divisions with (�anthropogenic�
�lightning) � 1 generally fall into the Humid Temperate domain.

Wildfire Statistics as a Function of Decade. In each ecoregion we also
examine the wildfire data by decade (1970–1979, 1980–1989, and
1990–1999), both by different ignition source and for all fires
irrespective of ignition source. We find similar results for � and
log� as for the entire 31-yr period (Table 1). However, there is
a small (statistically nonsignificant) decrease of 3–12% in �
values from the decades 1970s to 1990s for all ecoregions except
Warm Continental Mtns., Marine, and Prairie (each of which
have scant data).

Wildfire Recurrence Intervals. For each ecoregion we use Eq. 5 to
calculate recurrence intervals T(�0.01 km2) and T(�10 km2).
This probabilistic hazard analysis gives us the average time
between events with burned areas greater than or equal to 0.01
and 10 km2, respectively, occurring in a defined spatial ‘‘area’’
within each ecoregion. For comparison between ecoregions, we
will consider relatively small spatial areas of size 1,000 km2.

To examine the strength of temporal correlation in wildfire
areas (also see ref. 24), we examined the time lags between
successive wildfire areas for specific ecoregion divisions, taking
different lower cutoff bounds for the wildfire areas used. We find
that the wildfire events exhibit short-term but not long-term
memory; the smallest wildfire areas are correlated in time, but
the medium and large ones are approximately uncorrelated (i.e.,
Poissonian). For medium and large events, this allows us to
calculate recurrence intervals based on the results of the fre-
quency–area wildfire statistics found earlier in Table 1.

Using Eq. 5, the recurrence intervals T(�AF) for each ecore-
gion division are given in Table 1, including �2� error bars as
calculated from the error bars on � and log�. Because of the
small amount of data used to fit the medium�upper tail of the
distribution in Eq. 1, the �2� error bars on T(�AF) are large,
averaging 30–60% of the actual recurrence interval value.
Despite this, there are clear differences between ecoregions. For
example, the Mediterranean Ecoregion has T(�10 km2) � 2 �
1 yr. In other words, for any 1,000-km2 ‘‘area’’ in this ecoregion,
we ‘‘expect’’ on average one wildfire with burned area AF � 10
km2 every 1–3 yr (33–100% probability of occurring in any year).
By contrast (Table 1), the Warm Continental Ecoregion has
T(�10 km2) � 203 � 99 yr; the occurrence probability for a
wildfire with AF � 10 km2 has dropped significantly to 0.3–1.0%
in any given year, a factor of �100 between the two ecoregion
divisions. A spatial mapping for T(�10 km2) is given in Fig. 3B.
For both the eastern and western thirds of the U.S., there is a
gradient from large to small recurrence intervals (i.e., lower to
higher hazard) going from north to south, with the largest
recurrence intervals of wildfires (lowest hazard) in the northeast
U.S. Our method for calculating wildfire-recurrence intervals
gives a simple and quick way of determining approximate
quantitative hazard assessments of given size wildfires (or larger)
occurring across the conterminous U.S.

Discussion
Spatial Distribution of �. The east-to-west gradient in � values
(Fig. 3A) observed at Bailey’s ecoregion division level suggests
that the ratio of the number of large to small wildfires decreases
from east to west across the conterminous U.S. Controls on the
wildfire regime (e.g., climate and fuels) vary temporally, spa-
tially, and at different scales (3), so it is difficult to attribute
specific causes to this east-to-west gradient. For example, the
observed reduced contribution of large wildfires to total burned
area (i.e., � large) in eastern ecoregion divisions may be due to
greater human population densities that increase forest frag-
mentation compared with western ecoregions (40). Alterna-
tively, the observed gradient may have natural drivers, with

Fig. 2. Normalized frequency–area wildfire statistics for Subtropical (A) and Mediterranean (B) ecoregions (1970–2000; data from ref. 37). Shown (circles) are
normalized frequency densities ḟ(AF) (number of wildfires per ‘‘unit bin’’ of 1 km2, normalized by database length in years and USFS area within the ecoregion)
plotted as a function of wildfire area AF. Also shown for both ecoregions is a solid line, the best least-squares fit to log[ḟ(AF)] � �� log[AF] � log�, with coefficient
of determination r2. Dashed lines represent lower�upper 95% confidence intervals, calculated from the standard error. Horizontal error bars on burned area
AF are due to measurement and size binning of individual wildfires (AF from 1–5 acres has primary peaks in wildfire occurrence at integer values; 5–30 acres, every
5 acres; 30–100 acres, every 10 acres; etc.). Therefore, for AF � 0.0040–0.010 km2 (1.0–2.5 acres), we use 0.5-acre horizontal error bars of �0.0020 km2, and for
AF � 0.010 km2, horizontal error bars of �0.2AF. Vertical error bars represent two standard deviations (�2�) of the normalized frequency densities ḟ(AF),
calculated as �2��NF (normalized by database length in years and USFS area within the ecoregion), where �NF is the number of wildfires in a ‘‘bin’’ of width
�AF. The �2� error bars are approximately the same as the lower and upper 95% confidence interval (�1.96�). Table 1 summarizes the results for all ecoregion
divisions.
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climate and vegetation producing conditions more conducive to
large wildfires in some ecoregions compared with others.

In other studies, gradients similar to that observed here have
been described and related to climate and vegetation. Turner et al.
(41) describe wildfire-occurrence gradients, as a function of altitude
and latitude, in crown fire ecosystems in continental northern North
America. They attribute these gradients to broad climatic variations
and note that western and central regions tend to have relatively
frequent fires with forest stand structures dominated by younger
individuals, whereas the eastern region experiences longer inter-fire
intervals and older stand structures. Other studies (5, 22, 23, 42)
have found climatic variability to be a dominant factor affecting
wildfire regimes at large temporal and spatial resolutions and
extents. A broad-scale gradient in wildfire-regime characteristics
across potential natural vegetation types has also been observed in
the U.S. (42) and Spain (6). Potential natural vegetation is the
successional endpoint (‘‘climax’’) vegetation of an area, in the
absence of climate change or human disturbance.

To examine potential drivers of the east-to-west gradient in �
values observed, we also examined wildfire records with reference
to ignition source. The ratio �anthropogenic��lightning � 1 in the eastern
third of the conterminous U.S. suggests a potential influence of
human activity on the relative scaling of wildfire-burned areas,
because these areas are more populated. It has been suggested (20)
that increased landscape heterogeneity decreases disturbance (e.g.,
wildfire) spread. Historic anthropogenic forest clearance, resulting
in forests fragmented by agricultural and urban land cover, has
increased the heterogeneity of eastern landscapes (40). This may
have reduced the relative number of large to small fires in the east
compared to the west. In western landscapes, forests have also
become fragmented, but via replacement by shrublands and grass-
lands (40) that are more conducive to wildfire spread than the
agricultural and urban land covers that have fragmented eastern
forests.

We suggest that the use of the power-law exponent � to
characterize wildfire regimes, in a similar fashion used in this
paper, will be useful in future wildfire-regime studies. In our
analyses, the influence of climatic factors on the observed
east-to-west gradient in � across the conterminous U.S. is not
clear. However, examining the relationships between � and
past�current climates could aid estimates of future wildfire
regime behavior (specifically the scaling of fire sizes) by linking
these relationships to models of future climate change. Further-
more, research considering the spatial relationship between �
and net primary production (the total stored energy�biomass
produced by photosynthesis, minus the energy used in autotro-
phic respiration, in a unit area) may be useful in examining
human impacts on the relative scaling of wildfire-burned areas
due to management or manipulation of vegetated lands.

Self-Organization in Wildfire Regimes. Wildfires influence vegeta-
tion, which, in turn, influences future wildfire activity (43).
Within ecosystems, the feedbacks between process (the wild-
fires) and the ecological patterns (vegetation type, age, physi-
ognomy, etc.) produce both spatial complexity and temporal
memory effects (44, 45). Both spatially and temporally, a ‘‘struc-
tured’’ pattern results, with some degree of spatial and temporal
autocorrelation. The patterns in vegetation both constrain, and
are in turn constrained by, the processes that generate them. For
an area of forest that has never been burned, after a wildfire
occurs there will be a pattern, the ‘‘mosaic,’’ of burned and
unburned patches of vegetation (e.g., ref. 46). These patterns
influence the next wildfire that occurs. Recently burned areas
may be less flammable (for example) than older ones. The next
wildfire is constrained by the old pattern but will create a new
one, and the feedback continues (47).

In this article, we have discussed power-law or scale-invariant
statistical distributions for wildfire-burned areas. Bolliger et al.
(48) queried whether, in nature, self-organizing dynamics would
overcome environmental gradients to ensure power-law behav-
ior. We certainly acknowledge that there are always upper and
lower cut-offs in nature for any power-law behavior, and the
same is true for wildfires. For instance, in the case of wildfires,
an upper boundary might be the barrier presented by a mountain
range or high topography dividing drainage networks. A lower
boundary might be the partial burning of a single tree or bush,
or fine-scale discontinuities in the fuel bed. However, despite
these feedbacks and upper�lower boundaries, we have shown
that wildfires within each of 18 different ecoregion divisions have
frequency–area relationships that are robustly scale-invariant
over more than five orders of burned area.

This robust power-law (scale-invariant) behavior of wildfire
areas might be taken as evidence that ecosystems self-organize
through the feedbacks described above to ensure that energy is
dissipated at the maximum rate across all scales. Self-
organization has previously been discussed for both real and

Fig. 3. Spatial mapping of � and recurrence interval T by ecoregion division.
Shown across the conterminous U.S. for 1970–2000 are the results of frequen-
cy–area statistics (Table 1) for USFS wildfires classified by ecoregion division
(Fig. 1). (A) Spatial distribution of � (power-law exponent in Eq. 1), represent-
ing the ratio of how many large vs. small wildfire areas occur in each ecoregion
division. (B) Recurrence intervals T(�AF) (Eq. 5) for AF � 10 km2, or how many
years on average a wildfire 10 km2 or larger would be expected in spatial areas
of 1,000 km2 within each ecoregion division. The legend colors go from dark
red (small recurrence intervals) to white (large recurrence intervals), repre-
senting ‘‘high’’ to ‘‘low’’ hazard, with the legend scale in years increasing
logarithmically. For A and B, �2� error bars for � and T(�AF) are given in
Table 1.
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model ecosystems (9–12, 25, 47, 49–53). Thus, variation in �
between ecoregions may indicate differences in energy balance
and rates of energy release in ecosystems according to differ-
ences in climate. An examination of � and its spatial and
temporal relationships with the net primary production and the
potential natural vegetation, in conjunction with more accurate
estimates of energy released during combustion currently being
developed (54), would contribute to understanding the role of
wildfire in ecosystem energetics and the organization within
open, dissipative systems (such as ecosystems) in general.

Recurrence Intervals of Wildfires. Using both � and �, we have
calculated the recurrence intervals T(�0.01 km2) and T(�10 km2)
for each ecoregion division (Table 1 and Fig. 3B). This type of
mapping, and extensions of it, will prove very useful for government
agencies and reinsurance groups when examining wildfire hazard.

Conclusions
Wildfires are costly in terms of damage and fatalities. The ways
in which they begin and propagate are complex, with an indi-

vidual wildfire depending strongly on meteorological conditions,
topography, vegetation, and, of course, wildfire-fighting efforts.
Despite this complexity, the frequency–area of wildfires in
conterminous U.S. ecoregions appear to robustly follow power-
law (heavy-tailed) distributions, over more than five orders of
burned area in each ecoregion. The simplicity of accepting
power-law (or similar heavy-tailed) distributions, which exhibit
scale-invariant behavior with excellent fits over many orders of
magnitude, allows the use of the parameters � and � to describe
the relative contribution and hazard of large wildfires within a
wildfire regime. In turn, normalized � and � values allow for the
explicit comparison and examination of wildfire-regime dynam-
ics and change between ecoregions, as illustrated here.

We thank Timothy J. Brown, for access to the USFS wildfire data set. We
also thank the two reviewers, Ian Main (University of Edinburgh) and
Malcolm Gill (Centre for Plant Biodiversity Research, Canberra, Aus-
tralia), for their constructive and comprehensive comments. The con-
tributions of B.D.M. were partially supported by United Kingdom
Natural Environment Research Council�Engineering and Physical Sci-
ences Research Council Grant NER�T�S�2003�00128.

1. Reichhardt, T. (2002) Nature 418, 3–4.
2. Food and Agriculture Organization of the United Nations (2001) Global Forest

Fire Assessment 1990–2000, Forest Resources Assessment Programme Working
Papers (Food and Agriculture Organization of the United Nations, Rome), No. 55.

3. Schoennagel, T., Veblen, T. T. & Romme, W. H. (2004) BioScience 54,
661–676.

4. Cleland, D. T., Crow, T. R., Saunders, S. C., Dickmann, D. I., Maclean, A. L.,
Jordan, J. K., Watson, R. L., Sloan, A. M. & Brosofske, K. (2004) Landscape
Ecol. 19, 311–325.

5. Grissino-Mayer, H. D. & Swetnam, T. W. (2000) Holocene 10, 213–220.
6. Vazquez, A., Perez, B., Fernandez-Gonzalez, F. & Moreno, J. M. (2002) J. Veg.

Sci. 13, 663–676.
7. Morgan, P., Hardy, C. A., Swetnam, T. W., Rollins, M. G. & Long, D. G. (2001)

Int. J. Wildland Fire 10, 329–342.
8. Minnich, R. A. (1983) Science 219, 1287–1294.
9. Malamud, B. D., Morein, G. & Turcotte, D. L. (1998) Science 281, 1840–1842.

10. Ricotta, C., Avena, G. & Marchetti, M. (1999) Ecol. Modell. 119, 73–77.
11. Ricotta, C., Arianoutsou, M., Dı́az-Delgado, R., Duguy, B., Lloret, F.,

Maroudi, E., Mazzoleni, S., Moreno, J. M., Rambal, S., Vallejo, R., et al. (2001)
Ecol. Modell. 141, 307–311.

12. Song, W. G., Fan, W. C., Wang, B. H. & Zhou, J. J. (2001) Ecol. Modell. 145, 61–68.
13. McCarthy, M. A. & Gill, A. M. (1997) in Frontiers in Ecology, eds. Klomp, N.

& Lunt, I. (Elsevier, Oxford), pp. 79–88.
14. Li, C., Corns, I. G. W. & Chang, R. C. (1999) Landscape Ecol. 14, 533–542.
15. Cumming, S. G. (2001) Can. J. For. Res. 31, 1297–1303.
16. Minnich, R. A. & Chou, Y. H. (1997) Int. J. Wildland Fire 7, 221–248.
17. Reed, W. J. & McKelvey, K. S. (2002) Ecol. Modell. 150, 239–254.
18. Ricotta, C. (2003) Comments Theor. Biol. 8, 93–101.
19. Schoenberg, F. P., Peng, R. & Woods, J. (2003) Environmetrics 14, 583–592.
20. Lloret, F., Calvo, E., Pons, X. & Dı́az-Delgado, R. (2002) Landscape Ecol. 17,

745–75.
21. Vazquez, A. & Moreno, J. M. (1998) Int. J. Wildland Fire 8, 103–115.
22. Pierce, J. L., Meyer, G. A. & Jull, A. J. T. (2004) Nature 432, 87–90.
23. Weisberg, P. J. & Swanson, F. J. (2003) For. Ecol. Manage. 172, 17–28.
24. Dı́az-Delgado, R., Lloret, F. & Pons, X. (2004) Intl. J. Wildland Fire 13, 89–99.
25. Turcotte, D. L., Malamud, B. D., Guzzetti, F. & Reichenbach, P. (2002) Proc.

Natl. Acad. Sci. USA 99, 2530–2537.
26. Sornette, D. (2004) Critical Phenomena in Natural Sciences (Springer, Berlin),

2nd Ed.
27. Hergarten, S. (2004) Nat. Hazards Earth Syst. Sci. 4, 309–313.

28. Gutenberg, B. & Richter, C. F. (1954) Seismicity of the Earth and Associated
Phenomena (Princeton Univ. Press, Princeton), 2nd Ed.

29. Malamud, B. D. (2004) Phys. World 17, 31–35.
30. Chapman, C. R. & Morrison, D. (1994) Nature 367, 33–40.
31. Chapman, C. R. (2004) Earth Planet. Sci. Lett. 222, 1–15.
32. Guzzetti, F., Malamud, B. D., Turcotte, D. L. & Reichenbach, P. (2002) Earth

Planet. Sci. Lett. 195, 169–183.
33. Malamud, B. D., Turcotte, D. L., Guzzetti, F. & Reichenbach, P. (2004) Earth

Surf. Processes Landforms 29, 687–711.
34. Pyle, D. M. (2000) in Encyclopedia of Volcanoes, eds. Sigurdsson, H., Houghton,

B., Rymer, H., Stix, J. & McNutt, S. (Academic, San Diego), pp. 263–269.
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